“You can see it as a sort of super coding agent,” says Pushmeet Kohli, a vice president at Google DeepMind who leads its AI for Science teams. “It doesn’t just propose a piece of code or an edit, it actually produces a result that maybe nobody was aware of.”
In particular, AlphaEvolve came up with a way to improve the software Google uses to allocate jobs to its many millions of servers around the world. Google DeepMind claims the company has been using this new software across all of its data centers for more than a year, freeing up 0.7% of Google’s total computing resources. That might not sound like much, but at Google’s scale it’s huge.
Jakob Moosbauer, a mathematician at the University of Warwick in the UK, is impressed. He says the way AlphaEvolve searches for algorithms that produce specific solutions—rather than searching for the solutions themselves—makes it especially powerful. “It makes the approach applicable to such a wide range of problems,” he says. “AI is becoming a tool that will be essential in mathematics and computer science.”
AlphaEvolve continues a line of work that Google DeepMind has been pursuing for years. Its vision is that AI can help to advance human knowledge across math and science. In 2022, it developed AlphaTensor, a model that found a faster way to solve matrix multiplications—a fundamental problem in computer science—beating a record that had stood for more than 50 years. In 2023, it revealed AlphaDev, which discovered faster ways to perform a number of basic calculations performed by computers trillions of times a day. AlphaTensor and AlphaDev both turn math problems into a kind of game, then search for a winning series of moves.
FunSearch, which arrived in late 2023, swapped out game-playing AI and replaced it with LLMs that can generate code. Because LLMs can carry out a range of tasks, FunSearch can take on a wider variety of problems than its predecessors, which were trained to play just one type of game. The tool was used to crack a famous unsolved problem in pure mathematics.
AlphaEvolve is the next generation of FunSearch. Instead of coming up with short snippets of code to solve a specific problem, as FunSearch did, it can produce programs that are hundreds of lines long. This makes it applicable to a much wider variety of problems.
In theory, AlphaEvolve could be applied to any problem that can be described in code and that has solutions that can be evaluated by a computer. “Algorithms run the world around us, so the impact of that is huge,” says Matej Balog, a researcher at Google DeepMind who leads the algorithm discovery team.
Survival of the fittest
Here’s how it works: AlphaEvolve can be prompted like any LLM. Give it a description of the problem and any extra hints you want, such as previous solutions, and AlphaEvolve will get Gemini 2.0 Flash (the smallest, fastest version of Google DeepMind’s flagship LLM) to generate multiple blocks of code to solve the problem.
#Google #DeepMinds #agent #large #language #models #crack #realworld #problems