For a lab of this size—spread across MIT, the Broad, the Brigham, the Koch Institute, and The Engine—it feels remarkably personal. Traverso, who holds the Karl Van Tassel (1925) Career Development Professorship, is known for greeting every member by name and scheduling one-on-one meetings every two or three weeks, creating a sense of trust and connection that permeates the lab.
That trust is essential for a team built on radical interdisciplinarity. L4TE brings together mechanical and electrical engineers, biologists, physicians, and veterinarians in a uniquely structured lab with specialized “cores” such as fabrication, bioanalytics, and in vivo teams. The setup means a researcher can move seamlessly from developing a biological formulation to collaborating with engineers to figure out the best way to deliver it—without leaving the lab’s ecosystem. It’s a culture where everyone’s expertise is valued, people pitch in across disciplines, and projects aim squarely at the lab’s central goal: creating medical technologies that not only work in theory but survive the long, unpredictable journey to the patient.
“At the core of what we do is really thinking about the patient, the person, and how we can help make their life better,” Traverso says.
Helping patients ASAP
Traverso’s team has developed a suite of novel technologies: a star-shaped capsule that unfolds in the stomach and delivers drugs for days or weeks; a vibrating pill that mimics the feeling of fullness; the technology behind a once-a-week antipsychotic tablet that has completed phase III clinical trials. (See “Designing devices for real-world care,” below.) Traverso has cofounded 11 startups to carry such innovations out of the lab and into the world, each tailored to the technology and patient population it serves.
But the products are only part of the story. What distinguishes Traverso’s approach is the way those products are conceived and built. In many research groups, initial discoveries are developed into early prototypes and then passed on to other teams—sometimes in industry, sometimes in clinical settings—for more advanced testing and eventual commercialization. Traverso’s lab typically links those steps into one continuous system, blending invention, prototyping, testing, iteration, and clinical feedback as the work of a single interdisciplinary team. Engineers sit shoulder to shoulder with physicians, materials scientists with microbiologists. On any given day, a researcher might start the morning discussing an animal study with a veterinarian, spend the afternoon refining a mechanical design, and close the day in a meeting with a regulatory expert. The setup collapses months of back-and-forth between separate teams into the collaborative environment of L4TE.
“This is a lab where if you want to learn something, you can learn everything if you want,” says Troy Ziliang Kang, one of the research scientists.
In a field where translating scientific ideas into practical applications can take years (or stall indefinitely), Traverso has built a culture designed to shorten that path.
The range of problems the lab tackles reflects its interdisciplinary openness. One recent project aimed to replace invasive contraceptive devices such as vaginal rings with a biodegradable injectable that begins as a liquid, solidifies inside the body, and dissolves safely over time.
Another project addresses the challenge of delivering drugs directly to the gut, bypassing the mucus barrier that blocks many treatments. For Kang, whose grandfather died of gastric cancer, the work is personal. He’s developing devices that combine traditional drugs with electroceuticals—therapies that use electrical stimulation to influence cells or tissues.
#Engineeringbetter #care #MIT #Technology #Review