How aging clocks can help us understand why we age—and if we can reverse it

by wellnessfitpro
0 comment

How to be young again

Two little mice lie side by side, anesthetized and unconscious, as Jim White prepares his scalpel. The animals are of the same breed but look decidedly different. One is a youthful three-month-old, its fur thick, black, and glossy. By comparison, the second mouse, a 20-month-old, looks a little the worse for wear. Its fur is graying and patchy. Its whiskers are short, and it generally looks kind of frail.

But the two mice are about to have a lot more in common. White, with some help from a colleague, makes incisions along the side of each mouse’s body and into the upper part of an arm and leg on the same side. He then carefully stitches the two animals together—membranes, fascia, and skin. 

The procedure takes around an hour, and the mice are then roused from their anesthesia. At first, the two still-groggy animals pull away from each other. But within a few days, they seem to have accepted that they now share their bodies. Soon their circulatory systems will fuse, and the animals will share a blood flow too.

cartoon man in profile with a stick of a wrist watch around a lit stick of dynamite in his mouth
“People are complicated. There’s a huge error bar.” — Steve Horvath, former biostatistician at the University of California, Los Angeles

LEON EDLER

White, who studies aging at Duke University, has been stitching mice together for years; he has performed this strange procedure, known as heterochronic parabiosis, more than a hundred times. And he’s seen a curious phenomenon occur. The older mice appear to benefit from the arrangement. They seem to get younger.

Experiments with heterochronic parabiosis have been performed for decades, but typically scientists keep the mice attached to each other for only a few weeks, says White. In their experiment, he and his colleagues left the mice attached for three months—equivalent to around 10 human years. The team then carefully separated the animals to assess how each of them had fared. “You’d think that they’d want to separate immediately,” says White. “But when you detach them … they kind of follow each other around.”

The most striking result of that experiment was that the older mice who had been attached to a younger mouse ended up living longer than other mice of a similar age. “[They lived] around 10% longer, but [they] also maintained a lot of [their] function,” says White. They were more active and maintained their strength for longer, he adds.

When his colleagues, including Poganik, applied aging clocks to the mice, they found that their epigenetic ages were lower than expected. “The young circulation slowed aging in the old mice,” says White. The effect seemed to last, too—at least for a little while. “It preserved that youthful state for longer than we expected,” he says.

The young mice went the other way and appeared biologically older, both while they were attached to the old mice and shortly after they were detached. But in their case, the effect seemed to be short-lived, says White: “The young mice went back to being young again.” 

#aging #clocks #understand #ageand #reverse

You may also like

Leave a Comment