Four reasons to be optimistic about AI’s energy usage

by wellnessfitpro
0 comment

3/ More efficient cooling in data centers

Another huge source of energy demand is the need to manage the waste heat produced by the high-end hardware on which AI models run. Tom Earp, engineering director at the design firm Page, has been building data centers since 2006, including a six-year stint doing so for Meta. Earp looks for efficiencies in everything from the structure of the building to the electrical supply, the cooling systems, and the way data is transferred in and out.

For a decade or more, as Moore’s Law tailed off, data-center designs were pretty stable, says Earp. And then everything changed. With the shift to processors like GPUs, and with even newer chip designs on the horizon, it is hard to predict what kind of hardware a new data center will need to house—and thus what energy demands it will have to support—in a few years’ time. But in the short term the safe bet is that chips will continue getting faster and hotter: “What I see is that the people who have to make these choices are planning for a lot of upside in how much power we’re going to need,” says Earp.

One thing is clear: The chips that run AI models, such as GPUs, require more power per unit of space than previous types of computer chips. And that has big knock-on implications for the cooling infrastructure inside a data center. “When power goes up, heat goes up,” says Earp.

With so many high-powered chips squashed together, air cooling (big fans, in other words) is no longer sufficient. Water has become the go-to coolant because it is better than air at whisking heat away. That’s not great news for local water sources around data centers. But there are ways to make water cooling more efficient.

One option is to use water to send the waste heat from a data center to places where it can be used. In Denmark water from data centers has been used to heat homes. In Paris, during the Olympics, it was used to heat swimming pools.  

Water can also serve as a type of battery. Energy generated from renewable sources, such as wind turbines or solar panels, can be used to chill water that is stored until it is needed to cool computers later, which reduces the power usage at peak times.

But as data centers get hotter, water cooling alone doesn’t cut it, says Tony Atti, CEO of Phononic, a startup that supplies specialist cooling chips. Chipmakers are creating chips that move data around faster and faster. He points to Nvidia, which is about to release a chip that processes 1.6 terabytes a second: “At that data rate, all hell breaks loose and the demand for cooling goes up exponentially,” he says.

According to Atti, the chips inside servers suck up around 45% of the power in a data center. But cooling those chips now takes almost as much power, around 40%. “For the first time, thermal management is becoming the gate to the expansion of this AI infrastructure,” he says.

#reasons #optimistic #AIs #energy #usage

You may also like

Leave a Comment